| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941 |
- /**********************************************************************************************
- *
- * raymath v2.0 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
- *
- * CONVENTIONS:
- * - Matrix structure is defined as row-major (memory layout) but parameters naming AND all
- * math operations performed by the library consider the structure as it was column-major
- * It is like transposed versions of the matrices are used for all the maths
- * It benefits some functions making them cache-friendly and also avoids matrix
- * transpositions sometimes required by OpenGL
- * Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3]
- * - Functions are always self-contained, no function use another raymath function inside,
- * required code is directly re-implemented inside
- * - Functions input parameters are always received by value (2 unavoidable exceptions)
- * - Functions use always a "result" variable for return (except C++ operators)
- * - Functions are always defined inline
- * - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
- * - No compound literals used to make sure libray is compatible with C++
- *
- * CONFIGURATION:
- * #define RAYMATH_IMPLEMENTATION
- * Generates the implementation of the library into the included file.
- * If not defined, the library is in header only mode and can be included in other headers
- * or source files without problems. But only ONE file should hold the implementation.
- *
- * #define RAYMATH_STATIC_INLINE
- * Define static inline functions code, so #include header suffices for use.
- * This may use up lots of memory.
- *
- * #define RAYMATH_DISABLE_CPP_OPERATORS
- * Disables C++ operator overloads for raymath types.
- *
- * LICENSE: zlib/libpng
- *
- * Copyright (c) 2015-2024 Ramon Santamaria (@raysan5)
- *
- * This software is provided "as-is", without any express or implied warranty. In no event
- * will the authors be held liable for any damages arising from the use of this software.
- *
- * Permission is granted to anyone to use this software for any purpose, including commercial
- * applications, and to alter it and redistribute it freely, subject to the following restrictions:
- *
- * 1. The origin of this software must not be misrepresented; you must not claim that you
- * wrote the original software. If you use this software in a product, an acknowledgment
- * in the product documentation would be appreciated but is not required.
- *
- * 2. Altered source versions must be plainly marked as such, and must not be misrepresented
- * as being the original software.
- *
- * 3. This notice may not be removed or altered from any source distribution.
- *
- **********************************************************************************************/
- #ifndef RAYMATH_H
- #define RAYMATH_H
- #if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE)
- #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory"
- #endif
- // Function specifiers definition
- #if defined(RAYMATH_IMPLEMENTATION)
- #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
- #define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll)
- #elif defined(BUILD_LIBTYPE_SHARED)
- #define RMAPI __attribute__((visibility("default"))) // We are building raylib as a Unix shared library (.so/.dylib)
- #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
- #define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll)
- #else
- #define RMAPI extern inline // Provide external definition
- #endif
- #elif defined(RAYMATH_STATIC_INLINE)
- #define RMAPI static inline // Functions may be inlined, no external out-of-line definition
- #else
- #if defined(__TINYC__)
- #define RMAPI static inline // plain inline not supported by tinycc (See issue #435)
- #else
- #define RMAPI inline // Functions may be inlined or external definition used
- #endif
- #endif
- //----------------------------------------------------------------------------------
- // Defines and Macros
- //----------------------------------------------------------------------------------
- #ifndef PI
- #define PI 3.14159265358979323846f
- #endif
- #ifndef EPSILON
- #define EPSILON 0.000001f
- #endif
- #ifndef DEG2RAD
- #define DEG2RAD (PI/180.0f)
- #endif
- #ifndef RAD2DEG
- #define RAD2DEG (180.0f/PI)
- #endif
- // Get float vector for Matrix
- #ifndef MatrixToFloat
- #define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
- #endif
- // Get float vector for Vector3
- #ifndef Vector3ToFloat
- #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
- #endif
- //----------------------------------------------------------------------------------
- // Types and Structures Definition
- //----------------------------------------------------------------------------------
- #if !defined(RL_VECTOR2_TYPE)
- // Vector2 type
- typedef struct Vector2 {
- float x;
- float y;
- } Vector2;
- #define RL_VECTOR2_TYPE
- #endif
- #if !defined(RL_VECTOR3_TYPE)
- // Vector3 type
- typedef struct Vector3 {
- float x;
- float y;
- float z;
- } Vector3;
- #define RL_VECTOR3_TYPE
- #endif
- #if !defined(RL_VECTOR4_TYPE)
- // Vector4 type
- typedef struct Vector4 {
- float x;
- float y;
- float z;
- float w;
- } Vector4;
- #define RL_VECTOR4_TYPE
- #endif
- #if !defined(RL_QUATERNION_TYPE)
- // Quaternion type
- typedef Vector4 Quaternion;
- #define RL_QUATERNION_TYPE
- #endif
- #if !defined(RL_MATRIX_TYPE)
- // Matrix type (OpenGL style 4x4 - right handed, column major)
- typedef struct Matrix {
- float m0, m4, m8, m12; // Matrix first row (4 components)
- float m1, m5, m9, m13; // Matrix second row (4 components)
- float m2, m6, m10, m14; // Matrix third row (4 components)
- float m3, m7, m11, m15; // Matrix fourth row (4 components)
- } Matrix;
- #define RL_MATRIX_TYPE
- #endif
- // NOTE: Helper types to be used instead of array return types for *ToFloat functions
- typedef struct float3 {
- float v[3];
- } float3;
- typedef struct float16 {
- float v[16];
- } float16;
- #include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabsf()
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Utils math
- //----------------------------------------------------------------------------------
- // Clamp float value
- RMAPI float Clamp(float value, float min, float max)
- {
- float result = (value < min)? min : value;
- if (result > max) result = max;
- return result;
- }
- // Calculate linear interpolation between two floats
- RMAPI float Lerp(float start, float end, float amount)
- {
- float result = start + amount*(end - start);
- return result;
- }
- // Normalize input value within input range
- RMAPI float Normalize(float value, float start, float end)
- {
- float result = (value - start)/(end - start);
- return result;
- }
- // Remap input value within input range to output range
- RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd)
- {
- float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart;
- return result;
- }
- // Wrap input value from min to max
- RMAPI float Wrap(float value, float min, float max)
- {
- float result = value - (max - min)*floorf((value - min)/(max - min));
- return result;
- }
- // Check whether two given floats are almost equal
- RMAPI int FloatEquals(float x, float y)
- {
- #if !defined(EPSILON)
- #define EPSILON 0.000001f
- #endif
- int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y))));
- return result;
- }
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Vector2 math
- //----------------------------------------------------------------------------------
- // Vector with components value 0.0f
- RMAPI Vector2 Vector2Zero(void)
- {
- Vector2 result = { 0.0f, 0.0f };
- return result;
- }
- // Vector with components value 1.0f
- RMAPI Vector2 Vector2One(void)
- {
- Vector2 result = { 1.0f, 1.0f };
- return result;
- }
- // Add two vectors (v1 + v2)
- RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2)
- {
- Vector2 result = { v1.x + v2.x, v1.y + v2.y };
- return result;
- }
- // Add vector and float value
- RMAPI Vector2 Vector2AddValue(Vector2 v, float add)
- {
- Vector2 result = { v.x + add, v.y + add };
- return result;
- }
- // Subtract two vectors (v1 - v2)
- RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
- {
- Vector2 result = { v1.x - v2.x, v1.y - v2.y };
- return result;
- }
- // Subtract vector by float value
- RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub)
- {
- Vector2 result = { v.x - sub, v.y - sub };
- return result;
- }
- // Calculate vector length
- RMAPI float Vector2Length(Vector2 v)
- {
- float result = sqrtf((v.x*v.x) + (v.y*v.y));
- return result;
- }
- // Calculate vector square length
- RMAPI float Vector2LengthSqr(Vector2 v)
- {
- float result = (v.x*v.x) + (v.y*v.y);
- return result;
- }
- // Calculate two vectors dot product
- RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2)
- {
- float result = (v1.x*v2.x + v1.y*v2.y);
- return result;
- }
- // Calculate distance between two vectors
- RMAPI float Vector2Distance(Vector2 v1, Vector2 v2)
- {
- float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
- return result;
- }
- // Calculate square distance between two vectors
- RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2)
- {
- float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
- return result;
- }
- // Calculate angle between two vectors
- // NOTE: Angle is calculated from origin point (0, 0)
- RMAPI float Vector2Angle(Vector2 v1, Vector2 v2)
- {
- float result = 0.0f;
- float dot = v1.x*v2.x + v1.y*v2.y;
- float det = v1.x*v2.y - v1.y*v2.x;
- result = atan2f(det, dot);
- return result;
- }
- // Calculate angle defined by a two vectors line
- // NOTE: Parameters need to be normalized
- // Current implementation should be aligned with glm::angle
- RMAPI float Vector2LineAngle(Vector2 start, Vector2 end)
- {
- float result = 0.0f;
- // TODO(10/9/2023): Currently angles move clockwise, determine if this is wanted behavior
- result = -atan2f(end.y - start.y, end.x - start.x);
- return result;
- }
- // Scale vector (multiply by value)
- RMAPI Vector2 Vector2Scale(Vector2 v, float scale)
- {
- Vector2 result = { v.x*scale, v.y*scale };
- return result;
- }
- // Multiply vector by vector
- RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
- {
- Vector2 result = { v1.x*v2.x, v1.y*v2.y };
- return result;
- }
- // Negate vector
- RMAPI Vector2 Vector2Negate(Vector2 v)
- {
- Vector2 result = { -v.x, -v.y };
- return result;
- }
- // Divide vector by vector
- RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
- {
- Vector2 result = { v1.x/v2.x, v1.y/v2.y };
- return result;
- }
- // Normalize provided vector
- RMAPI Vector2 Vector2Normalize(Vector2 v)
- {
- Vector2 result = { 0 };
- float length = sqrtf((v.x*v.x) + (v.y*v.y));
- if (length > 0)
- {
- float ilength = 1.0f/length;
- result.x = v.x*ilength;
- result.y = v.y*ilength;
- }
- return result;
- }
- // Transforms a Vector2 by a given Matrix
- RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat)
- {
- Vector2 result = { 0 };
- float x = v.x;
- float y = v.y;
- float z = 0;
- result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
- result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
- return result;
- }
- // Calculate linear interpolation between two vectors
- RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
- {
- Vector2 result = { 0 };
- result.x = v1.x + amount*(v2.x - v1.x);
- result.y = v1.y + amount*(v2.y - v1.y);
- return result;
- }
- // Calculate reflected vector to normal
- RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal)
- {
- Vector2 result = { 0 };
- float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product
- result.x = v.x - (2.0f*normal.x)*dotProduct;
- result.y = v.y - (2.0f*normal.y)*dotProduct;
- return result;
- }
- // Get min value for each pair of components
- RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2)
- {
- Vector2 result = { 0 };
- result.x = fminf(v1.x, v2.x);
- result.y = fminf(v1.y, v2.y);
- return result;
- }
- // Get max value for each pair of components
- RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2)
- {
- Vector2 result = { 0 };
- result.x = fmaxf(v1.x, v2.x);
- result.y = fmaxf(v1.y, v2.y);
- return result;
- }
- // Rotate vector by angle
- RMAPI Vector2 Vector2Rotate(Vector2 v, float angle)
- {
- Vector2 result = { 0 };
- float cosres = cosf(angle);
- float sinres = sinf(angle);
- result.x = v.x*cosres - v.y*sinres;
- result.y = v.x*sinres + v.y*cosres;
- return result;
- }
- // Move Vector towards target
- RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance)
- {
- Vector2 result = { 0 };
- float dx = target.x - v.x;
- float dy = target.y - v.y;
- float value = (dx*dx) + (dy*dy);
- if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
- float dist = sqrtf(value);
- result.x = v.x + dx/dist*maxDistance;
- result.y = v.y + dy/dist*maxDistance;
- return result;
- }
- // Invert the given vector
- RMAPI Vector2 Vector2Invert(Vector2 v)
- {
- Vector2 result = { 1.0f/v.x, 1.0f/v.y };
- return result;
- }
- // Clamp the components of the vector between
- // min and max values specified by the given vectors
- RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max)
- {
- Vector2 result = { 0 };
- result.x = fminf(max.x, fmaxf(min.x, v.x));
- result.y = fminf(max.y, fmaxf(min.y, v.y));
- return result;
- }
- // Clamp the magnitude of the vector between two min and max values
- RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max)
- {
- Vector2 result = v;
- float length = (v.x*v.x) + (v.y*v.y);
- if (length > 0.0f)
- {
- length = sqrtf(length);
- float scale = 1; // By default, 1 as the neutral element.
- if (length < min)
- {
- scale = min/length;
- }
- else if (length > max)
- {
- scale = max/length;
- }
- result.x = v.x*scale;
- result.y = v.y*scale;
- }
- return result;
- }
- // Check whether two given vectors are almost equal
- RMAPI int Vector2Equals(Vector2 p, Vector2 q)
- {
- #if !defined(EPSILON)
- #define EPSILON 0.000001f
- #endif
- int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
- ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y)))));
- return result;
- }
- // Compute the direction of a refracted ray
- // v: normalized direction of the incoming ray
- // n: normalized normal vector of the interface of two optical media
- // r: ratio of the refractive index of the medium from where the ray comes
- // to the refractive index of the medium on the other side of the surface
- RMAPI Vector2 Vector2Refract(Vector2 v, Vector2 n, float r)
- {
- Vector2 result = { 0 };
- float dot = v.x*n.x + v.y*n.y;
- float d = 1.0f - r*r*(1.0f - dot*dot);
- if (d >= 0.0f)
- {
- d = sqrtf(d);
- v.x = r*v.x - (r*dot + d)*n.x;
- v.y = r*v.y - (r*dot + d)*n.y;
- result = v;
- }
- return result;
- }
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Vector3 math
- //----------------------------------------------------------------------------------
- // Vector with components value 0.0f
- RMAPI Vector3 Vector3Zero(void)
- {
- Vector3 result = { 0.0f, 0.0f, 0.0f };
- return result;
- }
- // Vector with components value 1.0f
- RMAPI Vector3 Vector3One(void)
- {
- Vector3 result = { 1.0f, 1.0f, 1.0f };
- return result;
- }
- // Add two vectors
- RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2)
- {
- Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
- return result;
- }
- // Add vector and float value
- RMAPI Vector3 Vector3AddValue(Vector3 v, float add)
- {
- Vector3 result = { v.x + add, v.y + add, v.z + add };
- return result;
- }
- // Subtract two vectors
- RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
- {
- Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
- return result;
- }
- // Subtract vector by float value
- RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub)
- {
- Vector3 result = { v.x - sub, v.y - sub, v.z - sub };
- return result;
- }
- // Multiply vector by scalar
- RMAPI Vector3 Vector3Scale(Vector3 v, float scalar)
- {
- Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
- return result;
- }
- // Multiply vector by vector
- RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
- {
- Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
- return result;
- }
- // Calculate two vectors cross product
- RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
- {
- Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
- return result;
- }
- // Calculate one vector perpendicular vector
- RMAPI Vector3 Vector3Perpendicular(Vector3 v)
- {
- Vector3 result = { 0 };
- float min = fabsf(v.x);
- Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
- if (fabsf(v.y) < min)
- {
- min = fabsf(v.y);
- Vector3 tmp = {0.0f, 1.0f, 0.0f};
- cardinalAxis = tmp;
- }
- if (fabsf(v.z) < min)
- {
- Vector3 tmp = {0.0f, 0.0f, 1.0f};
- cardinalAxis = tmp;
- }
- // Cross product between vectors
- result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y;
- result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z;
- result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x;
- return result;
- }
- // Calculate vector length
- RMAPI float Vector3Length(const Vector3 v)
- {
- float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- return result;
- }
- // Calculate vector square length
- RMAPI float Vector3LengthSqr(const Vector3 v)
- {
- float result = v.x*v.x + v.y*v.y + v.z*v.z;
- return result;
- }
- // Calculate two vectors dot product
- RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2)
- {
- float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
- return result;
- }
- // Calculate distance between two vectors
- RMAPI float Vector3Distance(Vector3 v1, Vector3 v2)
- {
- float result = 0.0f;
- float dx = v2.x - v1.x;
- float dy = v2.y - v1.y;
- float dz = v2.z - v1.z;
- result = sqrtf(dx*dx + dy*dy + dz*dz);
- return result;
- }
- // Calculate square distance between two vectors
- RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2)
- {
- float result = 0.0f;
- float dx = v2.x - v1.x;
- float dy = v2.y - v1.y;
- float dz = v2.z - v1.z;
- result = dx*dx + dy*dy + dz*dz;
- return result;
- }
- // Calculate angle between two vectors
- RMAPI float Vector3Angle(Vector3 v1, Vector3 v2)
- {
- float result = 0.0f;
- Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
- float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z);
- float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
- result = atan2f(len, dot);
- return result;
- }
- // Negate provided vector (invert direction)
- RMAPI Vector3 Vector3Negate(Vector3 v)
- {
- Vector3 result = { -v.x, -v.y, -v.z };
- return result;
- }
- // Divide vector by vector
- RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
- {
- Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
- return result;
- }
- // Normalize provided vector
- RMAPI Vector3 Vector3Normalize(Vector3 v)
- {
- Vector3 result = v;
- float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length != 0.0f)
- {
- float ilength = 1.0f/length;
- result.x *= ilength;
- result.y *= ilength;
- result.z *= ilength;
- }
- return result;
- }
- //Calculate the projection of the vector v1 on to v2
- RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2)
- {
- Vector3 result = { 0 };
- float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
- float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
- float mag = v1dv2/v2dv2;
- result.x = v2.x*mag;
- result.y = v2.y*mag;
- result.z = v2.z*mag;
- return result;
- }
- //Calculate the rejection of the vector v1 on to v2
- RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2)
- {
- Vector3 result = { 0 };
- float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
- float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
- float mag = v1dv2/v2dv2;
- result.x = v1.x - (v2.x*mag);
- result.y = v1.y - (v2.y*mag);
- result.z = v1.z - (v2.z*mag);
- return result;
- }
- // Orthonormalize provided vectors
- // Makes vectors normalized and orthogonal to each other
- // Gram-Schmidt function implementation
- RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
- {
- float length = 0.0f;
- float ilength = 0.0f;
- // Vector3Normalize(*v1);
- Vector3 v = *v1;
- length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- v1->x *= ilength;
- v1->y *= ilength;
- v1->z *= ilength;
- // Vector3CrossProduct(*v1, *v2)
- Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x };
- // Vector3Normalize(vn1);
- v = vn1;
- length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- vn1.x *= ilength;
- vn1.y *= ilength;
- vn1.z *= ilength;
- // Vector3CrossProduct(vn1, *v1)
- Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x };
- *v2 = vn2;
- }
- // Transforms a Vector3 by a given Matrix
- RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat)
- {
- Vector3 result = { 0 };
- float x = v.x;
- float y = v.y;
- float z = v.z;
- result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
- result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
- result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
- return result;
- }
- // Transform a vector by quaternion rotation
- RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
- {
- Vector3 result = { 0 };
- result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
- result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
- result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
- return result;
- }
- // Rotates a vector around an axis
- RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle)
- {
- // Using Euler-Rodrigues Formula
- // Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula
- Vector3 result = v;
- // Vector3Normalize(axis);
- float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f/length;
- axis.x *= ilength;
- axis.y *= ilength;
- axis.z *= ilength;
- angle /= 2.0f;
- float a = sinf(angle);
- float b = axis.x*a;
- float c = axis.y*a;
- float d = axis.z*a;
- a = cosf(angle);
- Vector3 w = { b, c, d };
- // Vector3CrossProduct(w, v)
- Vector3 wv = { w.y*v.z - w.z*v.y, w.z*v.x - w.x*v.z, w.x*v.y - w.y*v.x };
- // Vector3CrossProduct(w, wv)
- Vector3 wwv = { w.y*wv.z - w.z*wv.y, w.z*wv.x - w.x*wv.z, w.x*wv.y - w.y*wv.x };
- // Vector3Scale(wv, 2*a)
- a *= 2;
- wv.x *= a;
- wv.y *= a;
- wv.z *= a;
- // Vector3Scale(wwv, 2)
- wwv.x *= 2;
- wwv.y *= 2;
- wwv.z *= 2;
- result.x += wv.x;
- result.y += wv.y;
- result.z += wv.z;
- result.x += wwv.x;
- result.y += wwv.y;
- result.z += wwv.z;
- return result;
- }
- // Move Vector towards target
- RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance)
- {
- Vector3 result = { 0 };
- float dx = target.x - v.x;
- float dy = target.y - v.y;
- float dz = target.z - v.z;
- float value = (dx*dx) + (dy*dy) + (dz*dz);
- if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
- float dist = sqrtf(value);
- result.x = v.x + dx/dist*maxDistance;
- result.y = v.y + dy/dist*maxDistance;
- result.z = v.z + dz/dist*maxDistance;
- return result;
- }
- // Calculate linear interpolation between two vectors
- RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
- {
- Vector3 result = { 0 };
- result.x = v1.x + amount*(v2.x - v1.x);
- result.y = v1.y + amount*(v2.y - v1.y);
- result.z = v1.z + amount*(v2.z - v1.z);
- return result;
- }
- // Calculate cubic hermite interpolation between two vectors and their tangents
- // as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
- RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount)
- {
- Vector3 result = { 0 };
- float amountPow2 = amount*amount;
- float amountPow3 = amount*amount*amount;
- result.x = (2*amountPow3 - 3*amountPow2 + 1)*v1.x + (amountPow3 - 2*amountPow2 + amount)*tangent1.x + (-2*amountPow3 + 3*amountPow2)*v2.x + (amountPow3 - amountPow2)*tangent2.x;
- result.y = (2*amountPow3 - 3*amountPow2 + 1)*v1.y + (amountPow3 - 2*amountPow2 + amount)*tangent1.y + (-2*amountPow3 + 3*amountPow2)*v2.y + (amountPow3 - amountPow2)*tangent2.y;
- result.z = (2*amountPow3 - 3*amountPow2 + 1)*v1.z + (amountPow3 - 2*amountPow2 + amount)*tangent1.z + (-2*amountPow3 + 3*amountPow2)*v2.z + (amountPow3 - amountPow2)*tangent2.z;
- return result;
- }
- // Calculate reflected vector to normal
- RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
- {
- Vector3 result = { 0 };
- // I is the original vector
- // N is the normal of the incident plane
- // R = I - (2*N*(DotProduct[I, N]))
- float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z);
- result.x = v.x - (2.0f*normal.x)*dotProduct;
- result.y = v.y - (2.0f*normal.y)*dotProduct;
- result.z = v.z - (2.0f*normal.z)*dotProduct;
- return result;
- }
- // Get min value for each pair of components
- RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2)
- {
- Vector3 result = { 0 };
- result.x = fminf(v1.x, v2.x);
- result.y = fminf(v1.y, v2.y);
- result.z = fminf(v1.z, v2.z);
- return result;
- }
- // Get max value for each pair of components
- RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2)
- {
- Vector3 result = { 0 };
- result.x = fmaxf(v1.x, v2.x);
- result.y = fmaxf(v1.y, v2.y);
- result.z = fmaxf(v1.z, v2.z);
- return result;
- }
- // Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
- // NOTE: Assumes P is on the plane of the triangle
- RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
- {
- Vector3 result = { 0 };
- Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a)
- Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a)
- Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z }; // Vector3Subtract(p, a)
- float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z); // Vector3DotProduct(v0, v0)
- float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z); // Vector3DotProduct(v0, v1)
- float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z); // Vector3DotProduct(v1, v1)
- float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z); // Vector3DotProduct(v2, v0)
- float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z); // Vector3DotProduct(v2, v1)
- float denom = d00*d11 - d01*d01;
- result.y = (d11*d20 - d01*d21)/denom;
- result.z = (d00*d21 - d01*d20)/denom;
- result.x = 1.0f - (result.z + result.y);
- return result;
- }
- // Projects a Vector3 from screen space into object space
- // NOTE: We are avoiding calling other raymath functions despite available
- RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view)
- {
- Vector3 result = { 0 };
- // Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it
- Matrix matViewProj = { // MatrixMultiply(view, projection);
- view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12,
- view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13,
- view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14,
- view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15,
- view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12,
- view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13,
- view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14,
- view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15,
- view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12,
- view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13,
- view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14,
- view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15,
- view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12,
- view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13,
- view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14,
- view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 };
- // Calculate inverted matrix -> MatrixInvert(matViewProj);
- // Cache the matrix values (speed optimization)
- float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3;
- float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7;
- float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11;
- float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15;
- float b00 = a00*a11 - a01*a10;
- float b01 = a00*a12 - a02*a10;
- float b02 = a00*a13 - a03*a10;
- float b03 = a01*a12 - a02*a11;
- float b04 = a01*a13 - a03*a11;
- float b05 = a02*a13 - a03*a12;
- float b06 = a20*a31 - a21*a30;
- float b07 = a20*a32 - a22*a30;
- float b08 = a20*a33 - a23*a30;
- float b09 = a21*a32 - a22*a31;
- float b10 = a21*a33 - a23*a31;
- float b11 = a22*a33 - a23*a32;
- // Calculate the invert determinant (inlined to avoid double-caching)
- float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
- Matrix matViewProjInv = {
- (a11*b11 - a12*b10 + a13*b09)*invDet,
- (-a01*b11 + a02*b10 - a03*b09)*invDet,
- (a31*b05 - a32*b04 + a33*b03)*invDet,
- (-a21*b05 + a22*b04 - a23*b03)*invDet,
- (-a10*b11 + a12*b08 - a13*b07)*invDet,
- (a00*b11 - a02*b08 + a03*b07)*invDet,
- (-a30*b05 + a32*b02 - a33*b01)*invDet,
- (a20*b05 - a22*b02 + a23*b01)*invDet,
- (a10*b10 - a11*b08 + a13*b06)*invDet,
- (-a00*b10 + a01*b08 - a03*b06)*invDet,
- (a30*b04 - a31*b02 + a33*b00)*invDet,
- (-a20*b04 + a21*b02 - a23*b00)*invDet,
- (-a10*b09 + a11*b07 - a12*b06)*invDet,
- (a00*b09 - a01*b07 + a02*b06)*invDet,
- (-a30*b03 + a31*b01 - a32*b00)*invDet,
- (a20*b03 - a21*b01 + a22*b00)*invDet };
- // Create quaternion from source point
- Quaternion quat = { source.x, source.y, source.z, 1.0f };
- // Multiply quat point by unprojecte matrix
- Quaternion qtransformed = { // QuaternionTransform(quat, matViewProjInv)
- matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w,
- matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w,
- matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w,
- matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w };
- // Normalized world points in vectors
- result.x = qtransformed.x/qtransformed.w;
- result.y = qtransformed.y/qtransformed.w;
- result.z = qtransformed.z/qtransformed.w;
- return result;
- }
- // Get Vector3 as float array
- RMAPI float3 Vector3ToFloatV(Vector3 v)
- {
- float3 buffer = { 0 };
- buffer.v[0] = v.x;
- buffer.v[1] = v.y;
- buffer.v[2] = v.z;
- return buffer;
- }
- // Invert the given vector
- RMAPI Vector3 Vector3Invert(Vector3 v)
- {
- Vector3 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z };
- return result;
- }
- // Clamp the components of the vector between
- // min and max values specified by the given vectors
- RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max)
- {
- Vector3 result = { 0 };
- result.x = fminf(max.x, fmaxf(min.x, v.x));
- result.y = fminf(max.y, fmaxf(min.y, v.y));
- result.z = fminf(max.z, fmaxf(min.z, v.z));
- return result;
- }
- // Clamp the magnitude of the vector between two values
- RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max)
- {
- Vector3 result = v;
- float length = (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
- if (length > 0.0f)
- {
- length = sqrtf(length);
- float scale = 1; // By default, 1 as the neutral element.
- if (length < min)
- {
- scale = min/length;
- }
- else if (length > max)
- {
- scale = max/length;
- }
- result.x = v.x*scale;
- result.y = v.y*scale;
- result.z = v.z*scale;
- }
- return result;
- }
- // Check whether two given vectors are almost equal
- RMAPI int Vector3Equals(Vector3 p, Vector3 q)
- {
- #if !defined(EPSILON)
- #define EPSILON 0.000001f
- #endif
- int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
- ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
- ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z)))));
- return result;
- }
- // Compute the direction of a refracted ray
- // v: normalized direction of the incoming ray
- // n: normalized normal vector of the interface of two optical media
- // r: ratio of the refractive index of the medium from where the ray comes
- // to the refractive index of the medium on the other side of the surface
- RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r)
- {
- Vector3 result = { 0 };
- float dot = v.x*n.x + v.y*n.y + v.z*n.z;
- float d = 1.0f - r*r*(1.0f - dot*dot);
- if (d >= 0.0f)
- {
- d = sqrtf(d);
- v.x = r*v.x - (r*dot + d)*n.x;
- v.y = r*v.y - (r*dot + d)*n.y;
- v.z = r*v.z - (r*dot + d)*n.z;
- result = v;
- }
- return result;
- }
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Vector4 math
- //----------------------------------------------------------------------------------
- RMAPI Vector4 Vector4Zero(void)
- {
- Vector4 result = { 0.0f, 0.0f, 0.0f, 0.0f };
- return result;
- }
- RMAPI Vector4 Vector4One(void)
- {
- Vector4 result = { 1.0f, 1.0f, 1.0f, 1.0f };
- return result;
- }
- RMAPI Vector4 Vector4Add(Vector4 v1, Vector4 v2)
- {
- Vector4 result = {
- v1.x + v2.x,
- v1.y + v2.y,
- v1.z + v2.z,
- v1.w + v2.w
- };
- return result;
- }
- RMAPI Vector4 Vector4AddValue(Vector4 v, float add)
- {
- Vector4 result = {
- v.x + add,
- v.y + add,
- v.z + add,
- v.w + add
- };
- return result;
- }
- RMAPI Vector4 Vector4Subtract(Vector4 v1, Vector4 v2)
- {
- Vector4 result = {
- v1.x - v2.x,
- v1.y - v2.y,
- v1.z - v2.z,
- v1.w - v2.w
- };
- return result;
- }
- RMAPI Vector4 Vector4SubtractValue(Vector4 v, float add)
- {
- Vector4 result = {
- v.x - add,
- v.y - add,
- v.z - add,
- v.w - add
- };
- return result;
- }
- RMAPI float Vector4Length(Vector4 v)
- {
- float result = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));
- return result;
- }
- RMAPI float Vector4LengthSqr(Vector4 v)
- {
- float result = (v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w);
- return result;
- }
- RMAPI float Vector4DotProduct(Vector4 v1, Vector4 v2)
- {
- float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w);
- return result;
- }
- // Calculate distance between two vectors
- RMAPI float Vector4Distance(Vector4 v1, Vector4 v2)
- {
- float result = sqrtf(
- (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
- (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w));
- return result;
- }
- // Calculate square distance between two vectors
- RMAPI float Vector4DistanceSqr(Vector4 v1, Vector4 v2)
- {
- float result =
- (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
- (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w);
- return result;
- }
- RMAPI Vector4 Vector4Scale(Vector4 v, float scale)
- {
- Vector4 result = { v.x*scale, v.y*scale, v.z*scale, v.w*scale };
- return result;
- }
- // Multiply vector by vector
- RMAPI Vector4 Vector4Multiply(Vector4 v1, Vector4 v2)
- {
- Vector4 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z, v1.w*v2.w };
- return result;
- }
- // Negate vector
- RMAPI Vector4 Vector4Negate(Vector4 v)
- {
- Vector4 result = { -v.x, -v.y, -v.z, -v.w };
- return result;
- }
- // Divide vector by vector
- RMAPI Vector4 Vector4Divide(Vector4 v1, Vector4 v2)
- {
- Vector4 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z, v1.w/v2.w };
- return result;
- }
- // Normalize provided vector
- RMAPI Vector4 Vector4Normalize(Vector4 v)
- {
- Vector4 result = { 0 };
- float length = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));
- if (length > 0)
- {
- float ilength = 1.0f/length;
- result.x = v.x*ilength;
- result.y = v.y*ilength;
- result.z = v.z*ilength;
- result.w = v.w*ilength;
- }
- return result;
- }
- // Get min value for each pair of components
- RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2)
- {
- Vector4 result = { 0 };
- result.x = fminf(v1.x, v2.x);
- result.y = fminf(v1.y, v2.y);
- result.z = fminf(v1.z, v2.z);
- result.w = fminf(v1.w, v2.w);
- return result;
- }
- // Get max value for each pair of components
- RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2)
- {
- Vector4 result = { 0 };
- result.x = fmaxf(v1.x, v2.x);
- result.y = fmaxf(v1.y, v2.y);
- result.z = fmaxf(v1.z, v2.z);
- result.w = fmaxf(v1.w, v2.w);
- return result;
- }
- // Calculate linear interpolation between two vectors
- RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount)
- {
- Vector4 result = { 0 };
- result.x = v1.x + amount*(v2.x - v1.x);
- result.y = v1.y + amount*(v2.y - v1.y);
- result.z = v1.z + amount*(v2.z - v1.z);
- result.w = v1.w + amount*(v2.w - v1.w);
- return result;
- }
- // Move Vector towards target
- RMAPI Vector4 Vector4MoveTowards(Vector4 v, Vector4 target, float maxDistance)
- {
- Vector4 result = { 0 };
- float dx = target.x - v.x;
- float dy = target.y - v.y;
- float dz = target.z - v.z;
- float dw = target.w - v.w;
- float value = (dx*dx) + (dy*dy) + (dz*dz) + (dw*dw);
- if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
- float dist = sqrtf(value);
- result.x = v.x + dx/dist*maxDistance;
- result.y = v.y + dy/dist*maxDistance;
- result.z = v.z + dz/dist*maxDistance;
- result.w = v.w + dw/dist*maxDistance;
- return result;
- }
- // Invert the given vector
- RMAPI Vector4 Vector4Invert(Vector4 v)
- {
- Vector4 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z, 1.0f/v.w };
- return result;
- }
- // Check whether two given vectors are almost equal
- RMAPI int Vector4Equals(Vector4 p, Vector4 q)
- {
- #if !defined(EPSILON)
- #define EPSILON 0.000001f
- #endif
- int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
- ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
- ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
- ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))));
- return result;
- }
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Matrix math
- //----------------------------------------------------------------------------------
- // Compute matrix determinant
- RMAPI float MatrixDeterminant(Matrix mat)
- {
- float result = 0.0f;
- // Cache the matrix values (speed optimization)
- float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
- float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
- float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
- float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
- result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
- a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
- a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
- a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
- a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
- a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
- return result;
- }
- // Get the trace of the matrix (sum of the values along the diagonal)
- RMAPI float MatrixTrace(Matrix mat)
- {
- float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
- return result;
- }
- // Transposes provided matrix
- RMAPI Matrix MatrixTranspose(Matrix mat)
- {
- Matrix result = { 0 };
- result.m0 = mat.m0;
- result.m1 = mat.m4;
- result.m2 = mat.m8;
- result.m3 = mat.m12;
- result.m4 = mat.m1;
- result.m5 = mat.m5;
- result.m6 = mat.m9;
- result.m7 = mat.m13;
- result.m8 = mat.m2;
- result.m9 = mat.m6;
- result.m10 = mat.m10;
- result.m11 = mat.m14;
- result.m12 = mat.m3;
- result.m13 = mat.m7;
- result.m14 = mat.m11;
- result.m15 = mat.m15;
- return result;
- }
- // Invert provided matrix
- RMAPI Matrix MatrixInvert(Matrix mat)
- {
- Matrix result = { 0 };
- // Cache the matrix values (speed optimization)
- float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
- float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
- float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
- float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
- float b00 = a00*a11 - a01*a10;
- float b01 = a00*a12 - a02*a10;
- float b02 = a00*a13 - a03*a10;
- float b03 = a01*a12 - a02*a11;
- float b04 = a01*a13 - a03*a11;
- float b05 = a02*a13 - a03*a12;
- float b06 = a20*a31 - a21*a30;
- float b07 = a20*a32 - a22*a30;
- float b08 = a20*a33 - a23*a30;
- float b09 = a21*a32 - a22*a31;
- float b10 = a21*a33 - a23*a31;
- float b11 = a22*a33 - a23*a32;
- // Calculate the invert determinant (inlined to avoid double-caching)
- float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
- result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
- result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
- result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
- result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
- result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
- result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
- result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
- result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
- result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
- result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
- result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
- result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
- result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
- result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
- result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
- result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
- return result;
- }
- // Get identity matrix
- RMAPI Matrix MatrixIdentity(void)
- {
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f };
- return result;
- }
- // Add two matrices
- RMAPI Matrix MatrixAdd(Matrix left, Matrix right)
- {
- Matrix result = { 0 };
- result.m0 = left.m0 + right.m0;
- result.m1 = left.m1 + right.m1;
- result.m2 = left.m2 + right.m2;
- result.m3 = left.m3 + right.m3;
- result.m4 = left.m4 + right.m4;
- result.m5 = left.m5 + right.m5;
- result.m6 = left.m6 + right.m6;
- result.m7 = left.m7 + right.m7;
- result.m8 = left.m8 + right.m8;
- result.m9 = left.m9 + right.m9;
- result.m10 = left.m10 + right.m10;
- result.m11 = left.m11 + right.m11;
- result.m12 = left.m12 + right.m12;
- result.m13 = left.m13 + right.m13;
- result.m14 = left.m14 + right.m14;
- result.m15 = left.m15 + right.m15;
- return result;
- }
- // Subtract two matrices (left - right)
- RMAPI Matrix MatrixSubtract(Matrix left, Matrix right)
- {
- Matrix result = { 0 };
- result.m0 = left.m0 - right.m0;
- result.m1 = left.m1 - right.m1;
- result.m2 = left.m2 - right.m2;
- result.m3 = left.m3 - right.m3;
- result.m4 = left.m4 - right.m4;
- result.m5 = left.m5 - right.m5;
- result.m6 = left.m6 - right.m6;
- result.m7 = left.m7 - right.m7;
- result.m8 = left.m8 - right.m8;
- result.m9 = left.m9 - right.m9;
- result.m10 = left.m10 - right.m10;
- result.m11 = left.m11 - right.m11;
- result.m12 = left.m12 - right.m12;
- result.m13 = left.m13 - right.m13;
- result.m14 = left.m14 - right.m14;
- result.m15 = left.m15 - right.m15;
- return result;
- }
- // Get two matrix multiplication
- // NOTE: When multiplying matrices... the order matters!
- RMAPI Matrix MatrixMultiply(Matrix left, Matrix right)
- {
- Matrix result = { 0 };
- result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
- result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
- result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
- result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
- result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
- result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
- result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
- result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
- result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
- result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
- result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
- result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
- result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
- result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
- result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
- result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
- return result;
- }
- // Get translation matrix
- RMAPI Matrix MatrixTranslate(float x, float y, float z)
- {
- Matrix result = { 1.0f, 0.0f, 0.0f, x,
- 0.0f, 1.0f, 0.0f, y,
- 0.0f, 0.0f, 1.0f, z,
- 0.0f, 0.0f, 0.0f, 1.0f };
- return result;
- }
- // Create rotation matrix from axis and angle
- // NOTE: Angle should be provided in radians
- RMAPI Matrix MatrixRotate(Vector3 axis, float angle)
- {
- Matrix result = { 0 };
- float x = axis.x, y = axis.y, z = axis.z;
- float lengthSquared = x*x + y*y + z*z;
- if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f))
- {
- float ilength = 1.0f/sqrtf(lengthSquared);
- x *= ilength;
- y *= ilength;
- z *= ilength;
- }
- float sinres = sinf(angle);
- float cosres = cosf(angle);
- float t = 1.0f - cosres;
- result.m0 = x*x*t + cosres;
- result.m1 = y*x*t + z*sinres;
- result.m2 = z*x*t - y*sinres;
- result.m3 = 0.0f;
- result.m4 = x*y*t - z*sinres;
- result.m5 = y*y*t + cosres;
- result.m6 = z*y*t + x*sinres;
- result.m7 = 0.0f;
- result.m8 = x*z*t + y*sinres;
- result.m9 = y*z*t - x*sinres;
- result.m10 = z*z*t + cosres;
- result.m11 = 0.0f;
- result.m12 = 0.0f;
- result.m13 = 0.0f;
- result.m14 = 0.0f;
- result.m15 = 1.0f;
- return result;
- }
- // Get x-rotation matrix
- // NOTE: Angle must be provided in radians
- RMAPI Matrix MatrixRotateX(float angle)
- {
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
- float cosres = cosf(angle);
- float sinres = sinf(angle);
- result.m5 = cosres;
- result.m6 = sinres;
- result.m9 = -sinres;
- result.m10 = cosres;
- return result;
- }
- // Get y-rotation matrix
- // NOTE: Angle must be provided in radians
- RMAPI Matrix MatrixRotateY(float angle)
- {
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
- float cosres = cosf(angle);
- float sinres = sinf(angle);
- result.m0 = cosres;
- result.m2 = -sinres;
- result.m8 = sinres;
- result.m10 = cosres;
- return result;
- }
- // Get z-rotation matrix
- // NOTE: Angle must be provided in radians
- RMAPI Matrix MatrixRotateZ(float angle)
- {
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
- float cosres = cosf(angle);
- float sinres = sinf(angle);
- result.m0 = cosres;
- result.m1 = sinres;
- result.m4 = -sinres;
- result.m5 = cosres;
- return result;
- }
- // Get xyz-rotation matrix
- // NOTE: Angle must be provided in radians
- RMAPI Matrix MatrixRotateXYZ(Vector3 angle)
- {
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
- float cosz = cosf(-angle.z);
- float sinz = sinf(-angle.z);
- float cosy = cosf(-angle.y);
- float siny = sinf(-angle.y);
- float cosx = cosf(-angle.x);
- float sinx = sinf(-angle.x);
- result.m0 = cosz*cosy;
- result.m1 = (cosz*siny*sinx) - (sinz*cosx);
- result.m2 = (cosz*siny*cosx) + (sinz*sinx);
- result.m4 = sinz*cosy;
- result.m5 = (sinz*siny*sinx) + (cosz*cosx);
- result.m6 = (sinz*siny*cosx) - (cosz*sinx);
- result.m8 = -siny;
- result.m9 = cosy*sinx;
- result.m10= cosy*cosx;
- return result;
- }
- // Get zyx-rotation matrix
- // NOTE: Angle must be provided in radians
- RMAPI Matrix MatrixRotateZYX(Vector3 angle)
- {
- Matrix result = { 0 };
- float cz = cosf(angle.z);
- float sz = sinf(angle.z);
- float cy = cosf(angle.y);
- float sy = sinf(angle.y);
- float cx = cosf(angle.x);
- float sx = sinf(angle.x);
- result.m0 = cz*cy;
- result.m4 = cz*sy*sx - cx*sz;
- result.m8 = sz*sx + cz*cx*sy;
- result.m12 = 0;
- result.m1 = cy*sz;
- result.m5 = cz*cx + sz*sy*sx;
- result.m9 = cx*sz*sy - cz*sx;
- result.m13 = 0;
- result.m2 = -sy;
- result.m6 = cy*sx;
- result.m10 = cy*cx;
- result.m14 = 0;
- result.m3 = 0;
- result.m7 = 0;
- result.m11 = 0;
- result.m15 = 1;
- return result;
- }
- // Get scaling matrix
- RMAPI Matrix MatrixScale(float x, float y, float z)
- {
- Matrix result = { x, 0.0f, 0.0f, 0.0f,
- 0.0f, y, 0.0f, 0.0f,
- 0.0f, 0.0f, z, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f };
- return result;
- }
- // Get perspective projection matrix
- RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double nearPlane, double farPlane)
- {
- Matrix result = { 0 };
- float rl = (float)(right - left);
- float tb = (float)(top - bottom);
- float fn = (float)(farPlane - nearPlane);
- result.m0 = ((float)nearPlane*2.0f)/rl;
- result.m1 = 0.0f;
- result.m2 = 0.0f;
- result.m3 = 0.0f;
- result.m4 = 0.0f;
- result.m5 = ((float)nearPlane*2.0f)/tb;
- result.m6 = 0.0f;
- result.m7 = 0.0f;
- result.m8 = ((float)right + (float)left)/rl;
- result.m9 = ((float)top + (float)bottom)/tb;
- result.m10 = -((float)farPlane + (float)nearPlane)/fn;
- result.m11 = -1.0f;
- result.m12 = 0.0f;
- result.m13 = 0.0f;
- result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
- result.m15 = 0.0f;
- return result;
- }
- // Get perspective projection matrix
- // NOTE: Fovy angle must be provided in radians
- RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane)
- {
- Matrix result = { 0 };
- double top = nearPlane*tan(fovY*0.5);
- double bottom = -top;
- double right = top*aspect;
- double left = -right;
- // MatrixFrustum(-right, right, -top, top, near, far);
- float rl = (float)(right - left);
- float tb = (float)(top - bottom);
- float fn = (float)(farPlane - nearPlane);
- result.m0 = ((float)nearPlane*2.0f)/rl;
- result.m5 = ((float)nearPlane*2.0f)/tb;
- result.m8 = ((float)right + (float)left)/rl;
- result.m9 = ((float)top + (float)bottom)/tb;
- result.m10 = -((float)farPlane + (float)nearPlane)/fn;
- result.m11 = -1.0f;
- result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
- return result;
- }
- // Get orthographic projection matrix
- RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane)
- {
- Matrix result = { 0 };
- float rl = (float)(right - left);
- float tb = (float)(top - bottom);
- float fn = (float)(farPlane - nearPlane);
- result.m0 = 2.0f/rl;
- result.m1 = 0.0f;
- result.m2 = 0.0f;
- result.m3 = 0.0f;
- result.m4 = 0.0f;
- result.m5 = 2.0f/tb;
- result.m6 = 0.0f;
- result.m7 = 0.0f;
- result.m8 = 0.0f;
- result.m9 = 0.0f;
- result.m10 = -2.0f/fn;
- result.m11 = 0.0f;
- result.m12 = -((float)left + (float)right)/rl;
- result.m13 = -((float)top + (float)bottom)/tb;
- result.m14 = -((float)farPlane + (float)nearPlane)/fn;
- result.m15 = 1.0f;
- return result;
- }
- // Get camera look-at matrix (view matrix)
- RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
- {
- Matrix result = { 0 };
- float length = 0.0f;
- float ilength = 0.0f;
- // Vector3Subtract(eye, target)
- Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z };
- // Vector3Normalize(vz)
- Vector3 v = vz;
- length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- vz.x *= ilength;
- vz.y *= ilength;
- vz.z *= ilength;
- // Vector3CrossProduct(up, vz)
- Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x };
- // Vector3Normalize(x)
- v = vx;
- length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- vx.x *= ilength;
- vx.y *= ilength;
- vx.z *= ilength;
- // Vector3CrossProduct(vz, vx)
- Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x };
- result.m0 = vx.x;
- result.m1 = vy.x;
- result.m2 = vz.x;
- result.m3 = 0.0f;
- result.m4 = vx.y;
- result.m5 = vy.y;
- result.m6 = vz.y;
- result.m7 = 0.0f;
- result.m8 = vx.z;
- result.m9 = vy.z;
- result.m10 = vz.z;
- result.m11 = 0.0f;
- result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z); // Vector3DotProduct(vx, eye)
- result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z); // Vector3DotProduct(vy, eye)
- result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z); // Vector3DotProduct(vz, eye)
- result.m15 = 1.0f;
- return result;
- }
- // Get float array of matrix data
- RMAPI float16 MatrixToFloatV(Matrix mat)
- {
- float16 result = { 0 };
- result.v[0] = mat.m0;
- result.v[1] = mat.m1;
- result.v[2] = mat.m2;
- result.v[3] = mat.m3;
- result.v[4] = mat.m4;
- result.v[5] = mat.m5;
- result.v[6] = mat.m6;
- result.v[7] = mat.m7;
- result.v[8] = mat.m8;
- result.v[9] = mat.m9;
- result.v[10] = mat.m10;
- result.v[11] = mat.m11;
- result.v[12] = mat.m12;
- result.v[13] = mat.m13;
- result.v[14] = mat.m14;
- result.v[15] = mat.m15;
- return result;
- }
- //----------------------------------------------------------------------------------
- // Module Functions Definition - Quaternion math
- //----------------------------------------------------------------------------------
- // Add two quaternions
- RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
- {
- Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};
- return result;
- }
- // Add quaternion and float value
- RMAPI Quaternion QuaternionAddValue(Quaternion q, float add)
- {
- Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};
- return result;
- }
- // Subtract two quaternions
- RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
- {
- Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};
- return result;
- }
- // Subtract quaternion and float value
- RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub)
- {
- Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};
- return result;
- }
- // Get identity quaternion
- RMAPI Quaternion QuaternionIdentity(void)
- {
- Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
- return result;
- }
- // Computes the length of a quaternion
- RMAPI float QuaternionLength(Quaternion q)
- {
- float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- return result;
- }
- // Normalize provided quaternion
- RMAPI Quaternion QuaternionNormalize(Quaternion q)
- {
- Quaternion result = { 0 };
- float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f/length;
- result.x = q.x*ilength;
- result.y = q.y*ilength;
- result.z = q.z*ilength;
- result.w = q.w*ilength;
- return result;
- }
- // Invert provided quaternion
- RMAPI Quaternion QuaternionInvert(Quaternion q)
- {
- Quaternion result = q;
- float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;
- if (lengthSq != 0.0f)
- {
- float invLength = 1.0f/lengthSq;
- result.x *= -invLength;
- result.y *= -invLength;
- result.z *= -invLength;
- result.w *= invLength;
- }
- return result;
- }
- // Calculate two quaternion multiplication
- RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
- {
- Quaternion result = { 0 };
- float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
- float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
- result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
- result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
- result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
- result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
- return result;
- }
- // Scale quaternion by float value
- RMAPI Quaternion QuaternionScale(Quaternion q, float mul)
- {
- Quaternion result = { 0 };
- result.x = q.x*mul;
- result.y = q.y*mul;
- result.z = q.z*mul;
- result.w = q.w*mul;
- return result;
- }
- // Divide two quaternions
- RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
- {
- Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w };
- return result;
- }
- // Calculate linear interpolation between two quaternions
- RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
- {
- Quaternion result = { 0 };
- result.x = q1.x + amount*(q2.x - q1.x);
- result.y = q1.y + amount*(q2.y - q1.y);
- result.z = q1.z + amount*(q2.z - q1.z);
- result.w = q1.w + amount*(q2.w - q1.w);
- return result;
- }
- // Calculate slerp-optimized interpolation between two quaternions
- RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
- {
- Quaternion result = { 0 };
- // QuaternionLerp(q1, q2, amount)
- result.x = q1.x + amount*(q2.x - q1.x);
- result.y = q1.y + amount*(q2.y - q1.y);
- result.z = q1.z + amount*(q2.z - q1.z);
- result.w = q1.w + amount*(q2.w - q1.w);
- // QuaternionNormalize(q);
- Quaternion q = result;
- float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f/length;
- result.x = q.x*ilength;
- result.y = q.y*ilength;
- result.z = q.z*ilength;
- result.w = q.w*ilength;
- return result;
- }
- // Calculates spherical linear interpolation between two quaternions
- RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
- {
- Quaternion result = { 0 };
- #if !defined(EPSILON)
- #define EPSILON 0.000001f
- #endif
- float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
- if (cosHalfTheta < 0)
- {
- q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w;
- cosHalfTheta = -cosHalfTheta;
- }
- if (fabsf(cosHalfTheta) >= 1.0f) result = q1;
- else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
- else
- {
- float halfTheta = acosf(cosHalfTheta);
- float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
- if (fabsf(sinHalfTheta) < EPSILON)
- {
- result.x = (q1.x*0.5f + q2.x*0.5f);
- result.y = (q1.y*0.5f + q2.y*0.5f);
- result.z = (q1.z*0.5f + q2.z*0.5f);
- result.w = (q1.w*0.5f + q2.w*0.5f);
- }
- else
- {
- float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
- float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
- result.x = (q1.x*ratioA + q2.x*ratioB);
- result.y = (q1.y*ratioA + q2.y*ratioB);
- result.z = (q1.z*ratioA + q2.z*ratioB);
- result.w = (q1.w*ratioA + q2.w*ratioB);
- }
- }
- return result;
- }
- // Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm
- // as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
- RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t)
- {
- float t2 = t*t;
- float t3 = t2*t;
- float h00 = 2*t3 - 3*t2 + 1;
- float h10 = t3 - 2*t2 + t;
- float h01 = -2*t3 + 3*t2;
- float h11 = t3 - t2;
- Quaternion p0 = QuaternionScale(q1, h00);
- Quaternion m0 = QuaternionScale(outTangent1, h10);
- Quaternion p1 = QuaternionScale(q2, h01);
- Quaternion m1 = QuaternionScale(inTangent2, h11);
- Quaternion result = { 0 };
- result = QuaternionAdd(p0, m0);
- result = QuaternionAdd(result, p1);
- result = QuaternionAdd(result, m1);
- result = QuaternionNormalize(result);
- return result;
- }
- // Calculate quaternion based on the rotation from one vector to another
- RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
- {
- Quaternion result = { 0 };
- float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to)
- Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to)
- result.x = cross.x;
- result.y = cross.y;
- result.z = cross.z;
- result.w = 1.0f + cos2Theta;
- // QuaternionNormalize(q);
- // NOTE: Normalize to essentially nlerp the original and identity to 0.5
- Quaternion q = result;
- float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f/length;
- result.x = q.x*ilength;
- result.y = q.y*ilength;
- result.z = q.z*ilength;
- result.w = q.w*ilength;
- return result;
- }
- // Get a quaternion for a given rotation matrix
- RMAPI Quaternion QuaternionFromMatrix(Matrix mat)
- {
- Quaternion result = { 0 };
- float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10;
- float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10;
- float fourYSquaredMinus1 = mat.m5 - mat.m0 - mat.m10;
- float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5;
- int biggestIndex = 0;
- float fourBiggestSquaredMinus1 = fourWSquaredMinus1;
- if (fourXSquaredMinus1 > fourBiggestSquaredMinus1)
- {
- fourBiggestSquaredMinus1 = fourXSquaredMinus1;
- biggestIndex = 1;
- }
- if (fourYSquaredMinus1 > fourBiggestSquaredMinus1)
- {
- fourBiggestSquaredMinus1 = fourYSquaredMinus1;
- biggestIndex = 2;
- }
- if (fourZSquaredMinus1 > fourBiggestSquaredMinus1)
- {
- fourBiggestSquaredMinus1 = fourZSquaredMinus1;
- biggestIndex = 3;
- }
- float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f;
- float mult = 0.25f/biggestVal;
- switch (biggestIndex)
- {
- case 0:
- result.w = biggestVal;
- result.x = (mat.m6 - mat.m9)*mult;
- result.y = (mat.m8 - mat.m2)*mult;
- result.z = (mat.m1 - mat.m4)*mult;
- break;
- case 1:
- result.x = biggestVal;
- result.w = (mat.m6 - mat.m9)*mult;
- result.y = (mat.m1 + mat.m4)*mult;
- result.z = (mat.m8 + mat.m2)*mult;
- break;
- case 2:
- result.y = biggestVal;
- result.w = (mat.m8 - mat.m2)*mult;
- result.x = (mat.m1 + mat.m4)*mult;
- result.z = (mat.m6 + mat.m9)*mult;
- break;
- case 3:
- result.z = biggestVal;
- result.w = (mat.m1 - mat.m4)*mult;
- result.x = (mat.m8 + mat.m2)*mult;
- result.y = (mat.m6 + mat.m9)*mult;
- break;
- }
- return result;
- }
- // Get a matrix for a given quaternion
- RMAPI Matrix QuaternionToMatrix(Quaternion q)
- {
- Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
- float a2 = q.x*q.x;
- float b2 = q.y*q.y;
- float c2 = q.z*q.z;
- float ac = q.x*q.z;
- float ab = q.x*q.y;
- float bc = q.y*q.z;
- float ad = q.w*q.x;
- float bd = q.w*q.y;
- float cd = q.w*q.z;
- result.m0 = 1 - 2*(b2 + c2);
- result.m1 = 2*(ab + cd);
- result.m2 = 2*(ac - bd);
- result.m4 = 2*(ab - cd);
- result.m5 = 1 - 2*(a2 + c2);
- result.m6 = 2*(bc + ad);
- result.m8 = 2*(ac + bd);
- result.m9 = 2*(bc - ad);
- result.m10 = 1 - 2*(a2 + b2);
- return result;
- }
- // Get rotation quaternion for an angle and axis
- // NOTE: Angle must be provided in radians
- RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
- {
- Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
- float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
- if (axisLength != 0.0f)
- {
- angle *= 0.5f;
- float length = 0.0f;
- float ilength = 0.0f;
- // Vector3Normalize(axis)
- length = axisLength;
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- axis.x *= ilength;
- axis.y *= ilength;
- axis.z *= ilength;
- float sinres = sinf(angle);
- float cosres = cosf(angle);
- result.x = axis.x*sinres;
- result.y = axis.y*sinres;
- result.z = axis.z*sinres;
- result.w = cosres;
- // QuaternionNormalize(q);
- Quaternion q = result;
- length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- ilength = 1.0f/length;
- result.x = q.x*ilength;
- result.y = q.y*ilength;
- result.z = q.z*ilength;
- result.w = q.w*ilength;
- }
- return result;
- }
- // Get the rotation angle and axis for a given quaternion
- RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
- {
- if (fabsf(q.w) > 1.0f)
- {
- // QuaternionNormalize(q);
- float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
- if (length == 0.0f) length = 1.0f;
- float ilength = 1.0f/length;
- q.x = q.x*ilength;
- q.y = q.y*ilength;
- q.z = q.z*ilength;
- q.w = q.w*ilength;
- }
- Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
- float resAngle = 2.0f*acosf(q.w);
- float den = sqrtf(1.0f - q.w*q.w);
- if (den > EPSILON)
- {
- resAxis.x = q.x/den;
- resAxis.y = q.y/den;
- resAxis.z = q.z/den;
- }
- else
- {
- // This occurs when the angle is zero.
- // Not a problem: just set an arbitrary normalized axis.
- resAxis.x = 1.0f;
- }
- *outAxis = resAxis;
- *outAngle = resAngle;
- }
- // Get the quaternion equivalent to Euler angles
- // NOTE: Rotation order is ZYX
- RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll)
- {
- Quaternion result = { 0 };
- float x0 = cosf(pitch*0.5f);
- float x1 = sinf(pitch*0.5f);
- float y0 = cosf(yaw*0.5f);
- float y1 = sinf(yaw*0.5f);
- float z0 = cosf(roll*0.5f);
- float z1 = sinf(roll*0.5f);
- result.x = x1*y0*z0 - x0*y1*z1;
- result.y = x0*y1*z0 + x1*y0*z1;
- result.z = x0*y0*z1 - x1*y1*z0;
- result.w = x0*y0*z0 + x1*y1*z1;
- return result;
- }
- // Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
- // NOTE: Angles are returned in a Vector3 struct in radians
- RMAPI Vector3 QuaternionToEuler(Quaternion q)
- {
- Vector3 result = { 0 };
- // Roll (x-axis rotation)
- float x0 = 2.0f*(q.w*q.x + q.y*q.z);
- float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
- result.x = atan2f(x0, x1);
- // Pitch (y-axis rotation)
- float y0 = 2.0f*(q.w*q.y - q.z*q.x);
- y0 = y0 > 1.0f ? 1.0f : y0;
- y0 = y0 < -1.0f ? -1.0f : y0;
- result.y = asinf(y0);
- // Yaw (z-axis rotation)
- float z0 = 2.0f*(q.w*q.z + q.x*q.y);
- float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
- result.z = atan2f(z0, z1);
- return result;
- }
- // Transform a quaternion given a transformation matrix
- RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat)
- {
- Quaternion result = { 0 };
- result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
- result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
- result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
- result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
- return result;
- }
- // Check whether two given quaternions are almost equal
- RMAPI int QuaternionEquals(Quaternion p, Quaternion q)
- {
- #if !defined(EPSILON)
- #define EPSILON 0.000001f
- #endif
- int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
- ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
- ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
- ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) ||
- (((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
- ((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
- ((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
- ((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w))))));
- return result;
- }
- // Decompose a transformation matrix into its rotational, translational and scaling components
- RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotation, Vector3 *scale)
- {
- // Extract translation.
- translation->x = mat.m12;
- translation->y = mat.m13;
- translation->z = mat.m14;
- // Extract upper-left for determinant computation
- const float a = mat.m0;
- const float b = mat.m4;
- const float c = mat.m8;
- const float d = mat.m1;
- const float e = mat.m5;
- const float f = mat.m9;
- const float g = mat.m2;
- const float h = mat.m6;
- const float i = mat.m10;
- const float A = e*i - f*h;
- const float B = f*g - d*i;
- const float C = d*h - e*g;
- // Extract scale
- const float det = a*A + b*B + c*C;
- Vector3 abc = { a, b, c };
- Vector3 def = { d, e, f };
- Vector3 ghi = { g, h, i };
- float scalex = Vector3Length(abc);
- float scaley = Vector3Length(def);
- float scalez = Vector3Length(ghi);
- Vector3 s = { scalex, scaley, scalez };
- if (det < 0) s = Vector3Negate(s);
- *scale = s;
- // Remove scale from the matrix if it is not close to zero
- Matrix clone = mat;
- if (!FloatEquals(det, 0))
- {
- clone.m0 /= s.x;
- clone.m4 /= s.x;
- clone.m8 /= s.x;
- clone.m1 /= s.y;
- clone.m5 /= s.y;
- clone.m9 /= s.y;
- clone.m2 /= s.z;
- clone.m6 /= s.z;
- clone.m10 /= s.z;
- // Extract rotation
- *rotation = QuaternionFromMatrix(clone);
- }
- else
- {
- // Set to identity if close to zero
- *rotation = QuaternionIdentity();
- }
- }
- #if defined(__cplusplus) && !defined(RAYMATH_DISABLE_CPP_OPERATORS)
- // Optional C++ math operators
- //-------------------------------------------------------------------------------
- // Vector2 operators
- static constexpr Vector2 Vector2Zeros = { 0, 0 };
- static constexpr Vector2 Vector2Ones = { 1, 1 };
- static constexpr Vector2 Vector2UnitX = { 1, 0 };
- static constexpr Vector2 Vector2UnitY = { 0, 1 };
- inline Vector2 operator + (const Vector2& lhs, const Vector2& rhs)
- {
- return Vector2Add(lhs, rhs);
- }
- inline const Vector2& operator += (Vector2& lhs, const Vector2& rhs)
- {
- lhs = Vector2Add(lhs, rhs);
- return lhs;
- }
- inline Vector2 operator - (const Vector2& lhs, const Vector2& rhs)
- {
- return Vector2Subtract(lhs, rhs);
- }
- inline const Vector2& operator -= (Vector2& lhs, const Vector2& rhs)
- {
- lhs = Vector2Subtract(lhs, rhs);
- return lhs;
- }
- inline Vector2 operator * (const Vector2& lhs, const float& rhs)
- {
- return Vector2Scale(lhs, rhs);
- }
- inline const Vector2& operator *= (Vector2& lhs, const float& rhs)
- {
- lhs = Vector2Scale(lhs, rhs);
- return lhs;
- }
- inline Vector2 operator * (const Vector2& lhs, const Vector2& rhs)
- {
- return Vector2Multiply(lhs, rhs);
- }
- inline const Vector2& operator *= (Vector2& lhs, const Vector2& rhs)
- {
- lhs = Vector2Multiply(lhs, rhs);
- return lhs;
- }
- inline Vector2 operator * (const Vector2& lhs, const Matrix& rhs)
- {
- return Vector2Transform(lhs, rhs);
- }
- inline const Vector2& operator -= (Vector2& lhs, const Matrix& rhs)
- {
- lhs = Vector2Transform(lhs, rhs);
- return lhs;
- }
- inline Vector2 operator / (const Vector2& lhs, const float& rhs)
- {
- return Vector2Scale(lhs, 1.0f / rhs);
- }
- inline const Vector2& operator /= (Vector2& lhs, const float& rhs)
- {
- lhs = Vector2Scale(lhs, rhs);
- return lhs;
- }
- inline Vector2 operator / (const Vector2& lhs, const Vector2& rhs)
- {
- return Vector2Divide(lhs, rhs);
- }
- inline const Vector2& operator /= (Vector2& lhs, const Vector2& rhs)
- {
- lhs = Vector2Divide(lhs, rhs);
- return lhs;
- }
- inline bool operator == (const Vector2& lhs, const Vector2& rhs)
- {
- return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y);
- }
- inline bool operator != (const Vector2& lhs, const Vector2& rhs)
- {
- return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y);
- }
- // Vector3 operators
- static constexpr Vector3 Vector3Zeros = { 0, 0, 0 };
- static constexpr Vector3 Vector3Ones = { 1, 1, 1 };
- static constexpr Vector3 Vector3UnitX = { 1, 0, 0 };
- static constexpr Vector3 Vector3UnitY = { 0, 1, 0 };
- static constexpr Vector3 Vector3UnitZ = { 0, 0, 1 };
- inline Vector3 operator + (const Vector3& lhs, const Vector3& rhs)
- {
- return Vector3Add(lhs, rhs);
- }
- inline const Vector3& operator += (Vector3& lhs, const Vector3& rhs)
- {
- lhs = Vector3Add(lhs, rhs);
- return lhs;
- }
- inline Vector3 operator - (const Vector3& lhs, const Vector3& rhs)
- {
- return Vector3Subtract(lhs, rhs);
- }
- inline const Vector3& operator -= (Vector3& lhs, const Vector3& rhs)
- {
- lhs = Vector3Subtract(lhs, rhs);
- return lhs;
- }
- inline Vector3 operator * (const Vector3& lhs, const float& rhs)
- {
- return Vector3Scale(lhs, rhs);
- }
- inline const Vector3& operator *= (Vector3& lhs, const float& rhs)
- {
- lhs = Vector3Scale(lhs, rhs);
- return lhs;
- }
- inline Vector3 operator * (const Vector3& lhs, const Vector3& rhs)
- {
- return Vector3Multiply(lhs, rhs);
- }
- inline const Vector3& operator *= (Vector3& lhs, const Vector3& rhs)
- {
- lhs = Vector3Multiply(lhs, rhs);
- return lhs;
- }
- inline Vector3 operator * (const Vector3& lhs, const Matrix& rhs)
- {
- return Vector3Transform(lhs, rhs);
- }
- inline const Vector3& operator -= (Vector3& lhs, const Matrix& rhs)
- {
- lhs = Vector3Transform(lhs, rhs);
- return lhs;
- }
- inline Vector3 operator / (const Vector3& lhs, const float& rhs)
- {
- return Vector3Scale(lhs, 1.0f / rhs);
- }
- inline const Vector3& operator /= (Vector3& lhs, const float& rhs)
- {
- lhs = Vector3Scale(lhs, rhs);
- return lhs;
- }
- inline Vector3 operator / (const Vector3& lhs, const Vector3& rhs)
- {
- return Vector3Divide(lhs, rhs);
- }
- inline const Vector3& operator /= (Vector3& lhs, const Vector3& rhs)
- {
- lhs = Vector3Divide(lhs, rhs);
- return lhs;
- }
- inline bool operator == (const Vector3& lhs, const Vector3& rhs)
- {
- return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z);
- }
- inline bool operator != (const Vector3& lhs, const Vector3& rhs)
- {
- return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z);
- }
- // Vector4 operators
- static constexpr Vector4 Vector4Zeros = { 0, 0, 0, 0 };
- static constexpr Vector4 Vector4Ones = { 1, 1, 1, 1 };
- static constexpr Vector4 Vector4UnitX = { 1, 0, 0, 0 };
- static constexpr Vector4 Vector4UnitY = { 0, 1, 0, 0 };
- static constexpr Vector4 Vector4UnitZ = { 0, 0, 1, 0 };
- static constexpr Vector4 Vector4UnitW = { 0, 0, 0, 1 };
- inline Vector4 operator + (const Vector4& lhs, const Vector4& rhs)
- {
- return Vector4Add(lhs, rhs);
- }
- inline const Vector4& operator += (Vector4& lhs, const Vector4& rhs)
- {
- lhs = Vector4Add(lhs, rhs);
- return lhs;
- }
- inline Vector4 operator - (const Vector4& lhs, const Vector4& rhs)
- {
- return Vector4Subtract(lhs, rhs);
- }
- inline const Vector4& operator -= (Vector4& lhs, const Vector4& rhs)
- {
- lhs = Vector4Subtract(lhs, rhs);
- return lhs;
- }
- inline Vector4 operator * (const Vector4& lhs, const float& rhs)
- {
- return Vector4Scale(lhs, rhs);
- }
- inline const Vector4& operator *= (Vector4& lhs, const float& rhs)
- {
- lhs = Vector4Scale(lhs, rhs);
- return lhs;
- }
- inline Vector4 operator * (const Vector4& lhs, const Vector4& rhs)
- {
- return Vector4Multiply(lhs, rhs);
- }
- inline const Vector4& operator *= (Vector4& lhs, const Vector4& rhs)
- {
- lhs = Vector4Multiply(lhs, rhs);
- return lhs;
- }
- inline Vector4 operator / (const Vector4& lhs, const float& rhs)
- {
- return Vector4Scale(lhs, 1.0f / rhs);
- }
- inline const Vector4& operator /= (Vector4& lhs, const float& rhs)
- {
- lhs = Vector4Scale(lhs, rhs);
- return lhs;
- }
- inline Vector4 operator / (const Vector4& lhs, const Vector4& rhs)
- {
- return Vector4Divide(lhs, rhs);
- }
- inline const Vector4& operator /= (Vector4& lhs, const Vector4& rhs)
- {
- lhs = Vector4Divide(lhs, rhs);
- return lhs;
- }
- inline bool operator == (const Vector4& lhs, const Vector4& rhs)
- {
- return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z) && FloatEquals(lhs.w, rhs.w);
- }
- inline bool operator != (const Vector4& lhs, const Vector4& rhs)
- {
- return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z) || !FloatEquals(lhs.w, rhs.w);
- }
- // Quaternion operators
- static constexpr Quaternion QuaternionZeros = { 0, 0, 0, 0 };
- static constexpr Quaternion QuaternionOnes = { 1, 1, 1, 1 };
- static constexpr Quaternion QuaternionUnitX = { 0, 0, 0, 1 };
- inline Quaternion operator + (const Quaternion& lhs, const float& rhs)
- {
- return QuaternionAddValue(lhs, rhs);
- }
- inline const Quaternion& operator += (Quaternion& lhs, const float& rhs)
- {
- lhs = QuaternionAddValue(lhs, rhs);
- return lhs;
- }
- inline Quaternion operator - (const Quaternion& lhs, const float& rhs)
- {
- return QuaternionSubtractValue(lhs, rhs);
- }
- inline const Quaternion& operator -= (Quaternion& lhs, const float& rhs)
- {
- lhs = QuaternionSubtractValue(lhs, rhs);
- return lhs;
- }
- inline Quaternion operator * (const Quaternion& lhs, const Matrix& rhs)
- {
- return QuaternionTransform(lhs, rhs);
- }
- inline const Quaternion& operator *= (Quaternion& lhs, const Matrix& rhs)
- {
- lhs = QuaternionTransform(lhs, rhs);
- return lhs;
- }
- // Matrix operators
- inline Matrix operator + (const Matrix& lhs, const Matrix& rhs)
- {
- return MatrixAdd(lhs, rhs);
- }
- inline const Matrix& operator += (Matrix& lhs, const Matrix& rhs)
- {
- lhs = MatrixAdd(lhs, rhs);
- return lhs;
- }
- inline Matrix operator - (const Matrix& lhs, const Matrix& rhs)
- {
- return MatrixSubtract(lhs, rhs);
- }
- inline const Matrix& operator -= (Matrix& lhs, const Matrix& rhs)
- {
- lhs = MatrixSubtract(lhs, rhs);
- return lhs;
- }
- inline Matrix operator * (const Matrix& lhs, const Matrix& rhs)
- {
- return MatrixMultiply(lhs, rhs);
- }
- inline const Matrix& operator *= (Matrix& lhs, const Matrix& rhs)
- {
- lhs = MatrixMultiply(lhs, rhs);
- return lhs;
- }
- //-------------------------------------------------------------------------------
- #endif // C++ operators
- #endif // RAYMATH_H
|